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Abstract

Visual hull construction is a preliminary step for a ma-
jority of 3D shape reconstruction tasks and as such poses an
important problem for many sub-fields of computer vision.
In this work, we first implement and evaluate a familiar
voxel-based visual hull construction algorithm which serves
as the baseline for our proposed method. For our proposed
method, we extend the original Deep Image Prior method
by Ulyanov et al. to the problem of visual-hull construction
by viewing the 3D → 2D projection as a corruption. We
find that our proposed method is both capable of converging
on viable visual hulls for an array of different objects and
resilient to noise and various occlusions. We also present
some preliminary results for our method on 3D denoising
and 3D inpainting.

1. Introduction

At a glance, from close or afar, shape is what makes us
identify the fundamental properties of an object: what it
is and what it is for. From the early work on shape from
shading [4][16], texture [9] and silhouette [6] to recent deep
learning based approaches [3], a considerable portion of re-
searches in vision have targeted recovering 3D shape using
one or multiple images. Unlike approaches in shape from
shading/texture that require knowledge of the material prop-
erty, shape from silhouette methods such as visual hull can
be applied to various types of objects as long as the segmen-
tation and camera parameters are known. The basic princi-
ple of visual hull is to create a 3D representation of an object
using its silhouettes from various viewpoints. Each of the
silhouette from a camera view constrains the object within
a visual cone. The intersection of all those cones gives an
approximation to the object shape as seen in 1.

Despite the robustness of the classical visual hull algo-
rithm, learning based approaches rarely leverage ideas from
this method. For our project, we hope to bridge the gap
between geometry-based visual hulls and learning based re-
construction algorithms, which will shed light on the ability
of neural networks to perform shape reconstruction. Our

contribution is three-fold 1:

• We provide a voxel-based visual hull implementation
in Python, which is previously not available on open
source platforms (i.e. Github).

• We extend the Visual Hull algorithm and combine it
with the architecture of Ulyanov et al.’s Deep Image
Prior to investigate learning-based shape reconstruc-
tion. We motivate Deep Visual Hull Prior through eval-
uations on 3D inpainting and 3D denoising.

• We also provide a Python script to generate synthetic
multi-view stereo data from custom objects in Blender.

Figure 1. In a 2D example, the intersection of visual cones from
different camera views form the Visual Hull of object O.

2. Related Work
Shape from Silhouette. The Visual Hull concept is

closely related to the 3D reconstruction method Shape-
from-Silhouette (SfS), which was introduced by Baumgart
in 1974 [2] and Laurentini in 1994 [6]. As we show later in
this report, voxel-based visual hull SfS is easy to implement
and can provide an upper bound for object shape without
knowing the reflectance and texture properties of the object.
The output of visual hull can be later used for a variety of
tasks, such as navigation and obstacle avoidance in robotics.
However, there are also limitations of this method. For in-
stance, camera calibration error may be present and limit the
accuracy of the back-projection in SfS. The reconstruction
also does not work well for concave objects. The method
also requires an accurate segmentation of object silhouette

1The code for our project is available at https://github.com/
egrigokhan/deep-visual-hull-prior
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from its background, while in real life this task can be chal-
lenging and and result may be noisy.

Deep Image Prior. Ulyanov et al. [7] states that Deep
Convolutional Networks (DCNs) which are widely-used in
contemporary computer vision, are inherently equipped,
due to their structure, to act as a prior for natural images
which has high impedance for high-frequency content, i.e.
noise. Deep Image Prior (DIP) exploits this impedance-to-
noise for carrying out “standard inverse tasks” such as de-
noising, superresolution, and inpainting which can be char-
acterized as Energy Minimization Tasks of the form

x∗ = min
x
E(x, x0) +R(x) (1)

where E(x, x0) denotes a task related metric, x and x0 are
the original and corrupted images, and R(x) is the image
prior which is often reconstructed from the data. DIP as-
sumes that R(x) is inherently embedded within the struc-
ture of the DCNN and as such formats the task in terms of
a model optimization as

x∗ = fθ∗ where θ∗ = arg min
x

E(fθ(z), x0) (2)

where, f is the CNN model, and z is a fixed matrix sampled
from a normal distribution N (µ, σ2).

The CNN is then trained to overfit on the original cor-
rupted image, however due to the network’s high impedance
to noise, the network first overfits onto an uncorrupted, low-
frequency version of the image and only then proceeds to
overfit the corruptions, i.e. the high-frequency components.
Ulyanov et al. finds that using early-stopping in the mid-
dle of the training process allows for state-of-the-art re-
sults in many inverse task (e.g. inpainting, denoising, super-
resolution) benchmarks.

3. Methodology
Problem Statement. Given N binary masked images

[x1, x2 . . . xN ] of an object O from N cameras views with
projection matrices [P1, P2, . . . PN ], we want to recover an
upper-bound hull-approximation S of the object. (For com-
putational and evaluation purposes, we represent the 3D
shape as a voxel grid instead of an intersection of cones.)

Input. For i ∈ N viewpoints, we have image xi with
associated projection matrix Pi that is computed from:

(1) Camera calibration matrix (same for all images)

K =

f 0 px
0 f py
0 0 1

 where f is the principal distance and

px, py are the principal point offsets.
(2) orthonormal rotation matrix Ri
(3) vector representation translation ti = (tix, tiy, tiz)

T

The projection matrix is given by the 3 by 4 matrix
K[Ri|ti]. Here, the [Ri|ti] component converts the object

Figure 2. Proposed Deep Visual Hull architecture.

position in world coordinates to camera coordinates, and
camera intrinsic matrix K further project the object onto
the 2D image plane.

Output. Voxel grid V of dimension M ×M ×M . (For
our project, since all the models are on the scale of 5 − 10
centimeters, we chooseM = 90 which we find gives a good
approximation of the object shape.) For the deterministic
method, each voxel stores a value vx,y,z ∈ [0, N ]. For the
learning-based method, we have vx,y,z ∈ [0, 1] as our out-
put becomes a confidence score which is explained in fur-
ther detail momentarily. We then use Marching Cubes [1]
[8] algorithm to convert it to a mesh form. During the con-
version, we compute a threshold t to determine whether a
particular voxel gets filled (binary 1) or not (binary 0) in the
final reconstruction.

3.1. Deterministic Visual Hull

The Voxel Based Visual Hull is computed with the fol-
lowing algorithm:

1. For all M3 voxels, initialize each with count 0.
2. For each silhouette xi, i = 1 to N :

For each voxel vj = (x, y, z), j = 1 to M ×M ×M
(a) Project the voxel onto the i-th image plane

by Pi(x, y, z, 1)
T , where Pi is the projection matrix and

(x, y, z, 1)T is the voxel vj’s homogenous coordinates.
(b) If the projection lies within the object mask xi,

add 1 to vj’s total count.
3. Set a threshold t s.t. all voxels with count ≥ t are

considered filled and within the object. Other voxels are
considered in the background and are left empty.

4. Store the computed voxel grid V and threshold t. Fur-
ther convert it to a mesh (.dae) object using Marching Cubes
and obtain mesh representation S .

3.2. Deep Visual Hull Prior

For our proposed method, our key observation is that the
projection of the visual hull onto the N image planes it was
constructed from can be seen as a corruption. We subse-
quently formulate visual-hull reconstruction as an inverse
task and extend the Deep Image Prior architecture.

Our proposed Deep Visual Hull Prior (DVHP) network
seen in 2 takes as input a matrix z sampled from a normal
distribution N (µ, σ) where µ and σ are parameters of the
underlying distribution. Through a series of 3D convolu-
tions and deconvolutions (we choose a U-Net architecture
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as in the original Deep Image Prior paper), the network out-
puts a voxel-grid x∗ with values for each voxel representing
a confidence score between 0 and 1 for whether the voxel is
part of the final visual hull or not.

We then project the approximate voxel-grid onto the
N camera views using the known camera projection ma-
trices to obtain N camera-views {x∗1, x∗2, . . . x∗N}. Fi-
nally, the network is trained end-to-end using back-
propagation over the MSE-loss between the reconstructed
camera-views {x∗1, x∗2, . . . x∗N} and the original camera-
views {x1, x2, . . . xN}.

4. Experiments & Discussion
In this section, we perform experiments to evaluate our

3D reconstruction performance based on the visual hull al-
gorithms: the deterministic method and the learning based
method.

4.1. Dataset

Based on the visual hull algorithm, a desired dataset
needs to contain images taken from a variety of views, to-
gether with the camera intrinsics and extrinsics. Therefore,
we decide to perform our experiments on the Middlebury
Multi-view Stereo dataset [11]. This dataset contains two
objects, the DinoRing model and Temple model, each with
48 views taken on a semi-hemisphere around the object and
are captured using the Stanford spherical light field gantry.
However, the original authors have not released the ground
truth model for those objects therefore we use this dataset
mainly for qualitative evaluation.

To overcome this limitation, we use the Blender graphics
software to generate synthetic multi-view stereo data. Simi-
lar to the original set-up in the Middlebury dataset, we sam-
ple a ring at 10 different heights and take photos of the same
object from 12 angles, giving a total of 120 viewpoints on
a spherical rig. The variety of viewpoints can provide more
information for the learning-based model than the sparse
data from Middlebury dataset.2

4.2. Evaluation Metric

In both algorithms, the generated output is a voxel grid.
Since the ground truth model is a mesh object, we can evalu-
ate our reconstruction performance by either converting the
output prediction to a mesh or converting the ground truth
to a voxel grid. Inspired by prior work [12][3], we align
the model and ground truth and evaluate our reconstruction
performance using the following metrics .

Voxel Intersection over Union (IoU). We use the con-
version tool from [14], which converts the ground truth
mesh into a voxel grid with specified dimension. When

2For completeness, we also provide a method to simulate the environ-
ment of the Middlebury dataset using the same camera parameters.

computing the intersection-over-union (IoU), we divide
the number of voxels that are filled by both models by the
number of voxels filled in either one. A higher IoU indicates
better reconstruction result.3

Surface Distance. We also evaluate based on mesh sur-
face distance following the idea of Jensen et al. in [5].
For this metric, we convert the predicted voxel output to
a mesh file and then sample 10k points to compute the dis-
tance. Using the software from [13], we obtain the accu-
racy and completeness. Accuracy is the distance of the
reconstruction to the ground truth and completeness is the
distance from ground truth to reconstruction. Lower accu-
racy/completeness indicates better reconstruction quality.4

4.3. Performance Evaluation

4.3.1 Deterministic Visual Hull

From preliminary experiments, we found that the voxel-
based algorithm achieves good performance in reconstruct-
ing simple objects (e.g. cube, sphere, torus). Therefore, for
evaluation we highlight its performance on complex ob-
jects: the DinoRing model from Middlebury dataset and
Suzanne (Monkey) model from our synthetic dataset. The
results are shown in 3.

For the DinoRing model, since we do not have the
ground truth mesh, we use the 48-view reconstruction as
a relative benchmark. From the performance plots, we see
that after around 16 viewpoints, the performance plateaus.

For the Suzanne (Monkey) model, we are able to
achieve an IoU of 0.847 with the ground truth when using
all 120 viewpoints. We also provide a qualitative visualiza-
tion of the reconstruction results in Appendix D.

4.3.2 Deep Visual Hull Prior for Reconstruction

We evaluate our proposed Deep Visual Hull Prior architec-
ture on a synthetic dataset consisting of a cube, sphere and a
torus as well as the more complex Suzanne (Monkey) model
from before.

For the evaluation, we fix the normal distribution for the
noise input z to N (0, 1) and the output voxel-grid x∗ di-
mension to 90×90×90. For the Marching Cube algorithm,
we again use the public implementation from [1] with iso-
value ψ as ψ = 0.95max(x∗{ijk}∈[1,90]3).

As we are not carrying out inverse tasks, which will be
discussed momentarily, but evaluating whether or not our
proposed architecture is capable of fitting to a viable visual
hull, for this part of our evaluation we train for 1000 itera-
tions and report the best results between the 600 and 1000
iterations.

3The code to voxelize the mesh ground truth is available at https:
//github.com/xrhan/mesh-voxelization.

4The code for mesh distance evaluation is available at https://
github.com/xrhan/mesh-evaluation.
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Figure 3. 3D reconstruction performance using deterministic
voxel-based visual hull

Both our qualitative from 4 and quantitative results from
1 show that our proposed architecture is capable of converg-
ing on a viable visual hull representation for all three basic
object classes as well as to an upper-bound approximation
for the more complex Suzanne (Monkey) model from be-
fore.

The performance gap between polygonal objects (e.g.
cube) and spherical objects (e.g. sphere, torus) is not sur-
prising and arises from neural networks’ well-documented
spectral bias towards low-frequency content [10][15] which
makes it difficult for CNNs to map high-frequency features
(e.g. vertices, straight edges).

5. Conclusion
Our conclusions from this project can be summarized as

follows:

• We find that 3D CNNs are capable of converging on
viable visual hulls for objects supervised by multi-
view images. This further motivates the use of CNNs
for more complex 3D reconstruction tasks as they are
inherently capable of creating intrinsic visual hull rep-
resentations of objects.

• The performance gap between reconstructions of
polygonal and spherical objects can be attributed to
deep neural networks’ well-documented inability to
map high frequency content addressed by [10][15].

• We find that this impedance to high-frequency con-

Figure 4. Qualitative results for the evaluation of the proposed
DVHP architecture on Cube, Sphere, Torus and Suzanne (Mon-
key) models

Object Metric # of views

4 48 120

Cube
IoU (↑) 0.2763 0.2438 0.2407

Accuracy (↓) 4.6658 4.5218 4.6082

Completeness (↓) 3.5595 6.9307 7.0719

Torus
IoU (↑) 0.4356 0.5133 0.5227

Accuracy (↓) 7.6789 4.68561 4.7144

Completeness (↓) 2.3941 2.20575 2.2000

Sphere
IoU (↑) 0.6567 0.7304 0.7261

Accuracy (↓) 2.6801 0.8107 0.4738

Completeness (↓) 2.1231 0.7658 0.4418

Suzanne
(Monkey)

IoU (↑) 0.3247 0.45170 0.4633

Accuracy (↓) 11.5083 6.6413 6.2728

Completeness (↓) 6.0204 5.7641 4.5193

Table 1. Quantitative results for the evaluation of the proposed
DVHP architecture on Cube, Sphere, Torus and Suzanne (Mon-
key) models

tent enables DVHP to work under noise and various
other distortions which further motivates our proposed
method (see Appendix A).

• Finally, this work can be extended to experiment with
various inversion tasks such as (1) 3D noise removal,
(2) 3D super-resolution and (3) 3D inpainting in com-
pliance with the original Deep Image Prior paper.5

5For preliminary results on inverse tasks not included in the scope of
the original project, please see Appendix A.
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A. Preliminary Results for Inverse Tasks
As an extension on our original project, we also in-

clude an evaluation of the proposed DVHP model on inverse
tasks, namely (1) 3D denoising and (2) 3D inpainting.

3D Denoising. For 3D Denoising, we add a radial parti-
cle field to the Sphere model from Section 4.3.2 in Blender
to simulate uniform ambient noise.

We find that while the classical voxel-based visual hull
construction is able to remove the ambient noise from the
reconstruction, it does so at the cost of deforming the sphere
into an oblique ellipsoid (see x∗baseline from bottom row in
5). DVHP on the other hand is able to both remove the
ambient noise as well as largely preserve the geometry of
the sphere.

3D Inpainting. For 3D Inpainting, we apply a Boolean
difference modifier on the Sphere model from Section 4.3.2
with an oblique plane which removes a cross-section of the
object.

We find that while the classical voxel-based visual hull
construction is unable to recover the uncorrupted Sphere,
DVHP’s high-impedance to noise allows our proposed
model to converge to an uncorrupted, low-frequency model
of the sphere which allows us to inpaint the removed cross-
section.

B. Deep Visual Hull Prior Detailed Architec-
ture

We hereby include a detailed breakdown of the proposed
DVHP architecture for completeness in 6.

C. Group Member Contributions
Gokhan Egri. For the project, I wrote the first imple-

mentations of the voxel-based visual hull method and the
Deep Visual Hull Prior which we then developed and fine-
tuned with Nicole. I was also responsible for the Blender
script for generating the synthetic datasets. For the presen-
tation and the report, we also had an even division of labour
where I focused mostly on the DVHP-half of the write-up.

Xinran (Nicole) Han. For the project, I experimented
with the Middlebury dataset as well as exploring differ-
ent hyperparameters/loss functions for the Deep Visual Hull
Prior. I wrote the voxel IoU script and adapted a C++ based
mesh evaluation/voxelization tool to include scaling and re-
centering for performance evaluations. I wrote a Blender
script to generate photos from user-specified camera param-
eters. For the presentation and report, I focused mainly on
the deterministic method.

D. Reconstruction Results for Deterministic
Method

Here in 7, we provide a visualization of the experiment
results for deterministic visual hull in Section 4.3.1.
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Figure 5. Qualitative results for the evaluation of the proposed DVHP model on 3D Inpainting (top) and 3D Denoising (bottom) tasks

Figure 6. Deep Visual Hull Prior Detailed Architecture

Figure 7. Voxel-based deterministic visuall hull reconstruction re-
sults of DinoRing model (left, using 48-view reconstruction as a
relative benchmark) and Suzanne(Monkey) model (right).
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