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Abstract

Implicit Neural Representations (INR) have recently be-
come popular due to their storage efficiency and perfor-
mance in 2D and 3D scene representation. The primary
short-coming of INRs is that a new network needs to be
trained separately for each scene as different scene net-
works do not share information. Recent works have pro-
posed hyper-networks as a solution to the problem of iso-
lated training, where the weights of an INR are initialized
using a different network which is shared between differ-
ent scenes. In this work, we show that hyper-network INRs
not only exhibit the same desirable properties (inpainting,
denoising, etc.) of single-scene INRs but also converge
onto image representations which can be used for down-
stream tasks such as classification. All results and figures
in this paper can be reproduced using our code provided at
https://github.com/egrigokhan/hyperinr-
classifier.

1. Introduction

Different from conventional discrete representations of
signals (e.g. represent images using discrete pixel values,
3D shapes with point clouds, etc.), Implicit Neural Repre-
sentations parametrize signals as a continuous function that
maps the domain of the signal (e.g. pixel coordinate) to
the desired features (e.g. RGB values) using a neural net-
work. With INR, signals are no longer coupled with spatial
resolution, and it is thus easier to perform upsampling and
interpolation tasks for images. Meanwhile, the memory re-
quired to parametrize the signals is independent of spatial
resolution, but relies on the complexity of the underlying
signal.

In this work, we provide a brief survey of the methods
in the field and demonstrate that INR representations can
be used to generate meaningful embeddings that perform
well for downstream tasks such as classification which we
believe can lead to future research directions.

Our contributions in this work are as follows:

1. We train a HyperINR network using Sitzmann et al.’s
SIREN architecture and show that these networks ex-
hibit the same degree of applicability to certain opera-
tions such as upsampling, denoising and inpainting as
regular INRs.

2. We demonstrate that the latent representations learned
by the HyperINRs are meaningful and can be used for
downstream tasks such as image classification.

3. We show that the convergence behaviour of Hyper-
INRs can be improved by using pre-trained latent rep-
resentations.

4. We propose a new training scheme for HyperINRs
which encourage better latent representations and im-
proves the convergence behaviour of HyperINRs fur-
ther.

2. Related Work
Implicit Neural Representations (INR) Recent works
[7, 6, 8, 5, 9], have explored the potential of using multi-
layer perceptrons (MLP) for continuous, memory-efficient
implicit neural representations that map 2D/3D signals in
low-dimensional vectors (coordinates, viewing angles, etc.)
to scene features (pixel color, SDF, etc.) for various appli-
cations.

Sitzmann et al.’s SIREN [6] leverages periodic activation
functions and sinusoidal networks to represent complex nat-
ural signals and their derivatives. Mildenhall et al.’s NeRF
[5], uses a continuous scene representation for novel view
synthesis. Specifically, they represent continuous scenes
with complex geometry and materials as 5D neural radiance
fields, parameterized by basic MLP networks.

Dupont et al. [2] presents an extension of Sitzmann et
al.’s work to generative image modeling using INRs where
training a generative model on a continuous function of low-
dimensional scene representations rather than on a fixed
grid of pixels allows the generative models to scale inde-
pendently of signal resolution and dimension.

1

https://github.com/egrigokhan/hyperinr-classifier
https://github.com/egrigokhan/hyperinr-classifier


Hyper-network based Implicit Neural Representations
While INRs have shown great promise on a lot of tasks, they
need to be trained individually for each scene, which creates
extensive computational over-head for training. Unlike in
conventional CNN-based models, the learned features for
INRs aren’t shared between different scenes.

This constraint has previously been addressed [6, 2] by
the use of a hyper-network Φ which transforms signals (im-
ages, 3D scenes, etc.) into the MLP-domain by directly
predicting the weights θ of the INR-network ψ such that
I ≈ ψ(χ; θ = Φ(I)) where χ is the set of queried low-
dimensional vectors ((x, y)-coordinates for 2D images, a
5D-vector for NeRF).

Ha et al. [3] uses an external neural network to map
a latent vector describing the weight parameters at any
given layer (characteristic vector, weight index within layer,
weight size, etc.) to the weights of a second CNN net-
work and finds that the system achieves respectable results
in image recognition tasks with fewer trainable parameters.
Mildenhall et al. [4] uses a related mechanism called Kernel
Prediction Networks which maps noisy input images to a set
of kernels which are then multiplied with the noisy image
and aggregated for denoising. The kernels in this context
correspond to the weights of the predicted network.

The use of a hyper-network allows us to circumvent the
problem of isolated training by having a shared CNN-based
encoder which outputs a latent representation of the original
signal and mapping this latent representation using a shared
hyper-network to predict the weights of the INR.

3. Methodology

3.1. Implicit Neural Representation (INR) network

A standard implicit neural representation (INR) network
is shown in Figure 1.

Figure 1. INR network.

The neural network gθ(·) with trainable parameters θ
consists ofLMLP layers and takes as input a k-dimensional
coordinate vector and outputs an m-dimensional value vec-
tor. For 2D RGB images, we have {k,m} = {2, 3}, where
the k-dimensional vector is sampled from a grid of posi-
tions G[W×H×k] where W and H correspond to the width
and height of the input image P respectively. By querying
each individual coordinate pair (x, y) ∈ G, we obtain an
approximation P̂ to the original image P .

The parameters θ of the network are trained using the
MSE loss between the original image P and the approxi-
mation P̂ .

Samples from an INR trained on MNIST digits is shown
in Figure 2.

Figure 2. Single-scene INR outputs for the MNIST dataset.

3.2. INR with Hyper-network implementation

The INR with the hyper-network architecture is shown
in Figure 3.

The entire model consists of three networks: the CNN
encoder fφ, the hyper-network hφi

and the INR gθ with
trainable parameters ψ, φ = {φ1, φ2, . . . , φL}.

The CNN encoder fφ comprises residual convolutional
blocks and encodes the original image P to a 256-
dimensional vector v.

The hyper-network hφi comprises batch linear layers and
maps the latent vector v to a weight vector θi.

The INR network gθ has the same form as the INR net-
work implementation from before where the trainable pa-
rameters θ = {θ1, θ2, . . . , θL} are initialized from the out-
puts of the hyper-network.

As the parameters θ of the INR network are predicted by
the hyper-network, we train the parameters {ψ, φ} of only
the CNN encoder and the hyper-network using the MSE
loss between the approximate image P̂ and the original im-
age P .

Using only the MSE loss, we observe that the weights θ
of the INR network does not converge. As such we impose
two priors on the latent code v and the weights θi of the INR
network which gives the loss as

L = ||P̂ − P ||22 + α1||v||22 + α2||θ||22

Following Sitzmann et al. [6], we set {α1, α2} =
{0.1, 100}.

Samples from an HyperINR trained on MNIST digits is
shown in Figure 4.
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Figure 3. INR + Hyper-network diagram.

Figure 4. INR + Hyper-network outputs for the MNIST dataset.

3.3. Application of the HyperINR to different image
operations

A detailed explanation of why INR and HyperINR rep-
resentation of images are more suitable for some image op-
erations such as upsampling, inpainting, denoising are pro-
vided in the Appendix (sec. A).

4. Experiments
In this project, we first train a HyperINR network which

maps input images to the weights of an INR. After demon-
strating that HyperINRs have the same reconstruction per-
formance as individual INRs, we proceed with our primary
three-stage experimentation:

1. Can HyperINR be used for downstream tasks such
as classification?: As we are evaluating the viability
of HyperINRs as canonical image representations, we
are required to benchmark our architecture on common
downstream tasks such as image classification which
is an important benchmark for any canonical image
representation. This experiment shows that in train-
ing the HyperINRs, the discovered latent vectors v and
the weights of INR θ converge onto meaningful repre-
sentations of the input.

2. Can pre-trained classifier networks be used to gen-
erate HyperINR embeddings?: Having established
that the HyperINR converges onto meaningful embed-

dings, we experiment with initializing the CNN en-
coder fφ with a pre-trained classifier without the final
layer in order to obtain better convergence behaviour
and to reduce training time.

3. Can we embed classification as a secondary objec-
tive in HyperINR training?: Finally we experiment
with whether or not we can embed the classification
task within the HyperINR training regime to generate
embeddings better suited for classification while also
improving the performance of the HyperINR recon-
struction.

4.1. HyperINR Classifier

We train two image classifier networks on the MNIST
dataset using (1) the latent embeddings v and (2) the INR
weights θ generated by the HyperINR network.

Using the latent embeddings v. We create an image clas-
sifier using the trained embeddings v by constructing a two-
layer MLP network which maps the 256-dimensional vec-
tors v generated by the HyperINR to a 10-dimensional out-
put as shown in Figure 5.

Figure 5. Classification using latent vector v.

We train the network with a cross-entropy loss using an
Adam optimizer with learning rate λ = 0.001.

Using the INR weights θ. Using a 5-layer INR net-
work, we observe that the hyper-network outputs a
weight vector θ = {θ1, θ2, θ3, θ4, θ5} with the shapes
{(256, 2), (256, 256), (256, 256), (256, 256), (1, 256)}.

As it is infeasible to flatten the entire set of weights, we
combine all INR weights into a weight tensor θ∗ with shape
(5, 256, 256) which concatenates all weight vectors θ (we
repeat weights θ1 and θ5 in dimensions 2 and 1 respectively
to achieve the shape (256, 256)).

We then construct a CNN classifier which uses four lay-
ers of convolutional layers followed by three MLP layers
which map the weight matrix θ∗ to a 10-dimensional output
as shown in Figure 6.

We train the network with a cross-entropy loss using an
Adam optimizer with learning rate λ = 0.001.
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Figure 6. Classification using the weight tensor θ∗.

The training loss for both classifiers are shown in Fig-
ure 7. The latent vector classifier achieves a test accuracy
of 98.42% and the weight classifier achieves a test accuracy
of 97.96%.

Figure 7. Training loss versus epoch. Left: using latent vectors v,
right: using the weight tensor θ∗

4.2. HyperINR with Pre-trained Embeddings

We train a 2-layer MLP classifier on the MNIST dataset
which maps the flattened images x to a 10-dimensional out-
put with a hidden layer dimension of d = 256. After 3
epochs, we observe that our network converges to ∼ 99%
accuracy.

After the training, we remove the HyperINR encoder fφ
and train the HyperINR network by initializing the latent
vectors v to the hidden layer representations of the pre-
trained classifier.

The results for HyperINR and HyperINR with pre-
trained embeddings are shown in Figure 8 (first two
columns).

Here, we observe that the embeddings obtained from the
pre-trained classifier allow the HyperINR network to con-
verge faster and to clearer images. Note however that while
the HyperINR (pre-trained embeddings) network is able to
correctly identify the digit at the input, the reconstructions
often converge to a prototypical representation of the in-
put digit rather than replicating the form of the digit exactly
(see the results for Iteration 2000, the reconstructed digit
image is in fact a ‘5’, however it does not accurately recon-
struct the digit ‘5’ in the input). This is likely due to the
fact that classifier embeddings are trained to discriminate
not between different images belonging to the same digit
but rather between images belonging to different digits.

Figure 8. Sample HyperINR results throughout training iterations.

5. HyperINR with Classifier Loss

Having showed that (1) the HyperINR is capable of
learning meaningful embeddings and that (2) using pre-
trained embeddings improves convergence behaviour, we
resolve the problem of prototypical convergence described
previously by combining our previous two approaches.

We introduce an additional classifier network t(·) which
consists of a 2-layer MLP which maps the embedding v to
a 10-dimensional output with a hidden layer dimension of
d = 256 which is shown in Figure 9.

Figure 9. HyperINR with classifier loss diagram.
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The classifier loss Lclassifier is calculated using the
cross-entropy loss between the predicted labels and the
ground truth labels.

Then, our loss function becomes

L = ||P̂ − P ||22 + 0.1||v||22 + 100||θ||22 + 0.1× Lclassifier

We optimize the HyperINR and t(·) networks end-to-end
using an Adam classifier with a learning rate of λ = 0.01 for
the classifier and λ = 0.00005 for the rest of the network.

The sample results for the HyperINR trained with the
classifier network are shown in Figure 8 (third column).

Here, we observe that training end-to-end with a clas-
sifier network improves the clarity of the reconstructions
in the early iterations (observe that the HyperINR results
are over-blurred, the HyperINR (pre-trained embeddings)
results are noisy whereas the HyperINR (trained with clas-
sifier loss) results are clear). We also observe that the em-
beddings generated by the HyperINR (trained with classi-
fier loss) network also mostly resolve the problem of proto-
typical convergence seen in the case of the HyperINR (pre-
trained embedding networks)1.

The embeddings generated by the HyperINR (with clas-
sifier loss) achieve a test accuracy of 98.84% which is
an improvement over the classification accuracy of em-
beddings generated by the HyperINR and HyperINR (pre-
trained embeddings) network.

6. Discussion
Some of our comments on the current state of the project

are as follows:

• As far as we are aware, our work presents the first
demonstration of INR and HyperINR performance in
downstream tasks such as image classification. As
such, in order to cover as much new ground as possible
in a short amount of time, we have chosen to experi-
ment with the MNIST dataset for fast-prototyping and
sanity-checking, as stated in our original proposal. We
however include early results on the CIFAR-10 dataset
in the Appendix (sec. B).

• While training the HyperINR with the classifier, we
have observed that the inclusion of an additional clas-
sifier network in the training loop increased the train-
ing time per-iteration as expected. This increase was
however compensated by the better convergence be-
haviour we got in return, and as such our proposed
method gave a net improvement in convergence. We
note however that this may not be the case for more

1While the Iteration 1250 and Iteration 2000 rows in Figure 8 largely
confirm this observation, the reader is encouraged to generate more results
using our publicly available code to confirm that this is indeed the case.

sophisticated datasets/downstream tasks which require
more complex networks to be included such that the
increase in training time may not be compensated by
the improvements in convergence behaviour.

• While the results presented in this report are significant
on their own and further demonstrate the viability of
HyperINRs as canonical image representations, their
primary importance stems from the fact that they point
to a previously unexplored common ground between
INRs and feature learning which can potentially lead to
interesting research projects combining state-of-the-art
feature learning methods such as contrastive learning
[1] with the nascent INR literature.

7. Conclusion

We demonstrate the first instance of an hyper-network
based implicit neural representation network being used for
a downstream image recognition task such as classification.
After showing that the feature representations learned by
HyperINR methods can be used to get competitive classi-
fication scores, we further improve both the convergence
behaviour and the quality of the network reconstructions by
creating and benchmarking two new training schemes, us-
ing pre-trained embeddings and training embeddings with a
secondary classification objective respectively.

While we believe that the results presented in this pa-
per are strong on their own, we posit that their significance
is compounded upon considering their role as an instance
of the fingerpost towards future research directions which
combine the extensive feature learning literature with the
promising implicit neural representation framework.
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A. HyperINRs on different image operations
In this section, we briefly describe the suitability of INR

and HyperINR networks to certain operations by walking
through how these operations are carried out in the INR do-
main compared to the canonical pixel domain:

1. Upsampling

(a) In the pixel domain, upsampling is carried out
by spreading out the pixel grid to the desired size
and filling the spaces between the known pixels
with values often generated as an interpolation of
the surrounding known pixels.

(b) In the INR domain, as the image is gener-
ated by “sampling” a continuous function at a
[−1, 1]× [−1, 1] grid of coordinates, upsampling
in this context refers to ”sampling” the same con-
tinuous function with a denser grid of coordi-
nates. In this sense, we observe that upsampling
in the INR domain is in fact closer to the original
meaning of the term “upsampling” in the signal
literature.

2. Inpainting

(a) In the pixel domain, inpainting of a part of an
image which has been taken out is achieved by
externally specifying a means by which the sub-
tracted values are interpolated from the known
pixel values.

(b) In the INR domain, as the image is the output of
a continuous implicit function, the interpolation
method by which the removed area is inpainted
is determined automatically by a learned prior
on the weights of the INR (e.g. for the MNIST
dataset, the hyper-network is able to fill in the re-
moved part based on its knowledge of the general
form of the digit ‘3’).

3. Denoising

(a) In the pixel domain, denoising an image re-
quires us to separate the image into an image and
a noise term whereby we try and subtract the lat-
ter. The means by which this noise term is gen-
erated is however again decided externally.

(b) In the INR domain, denoising occurs similarly
to Ulyanov et al.’s Deep Image Prior [10], where
a convolutional neural network trained to recon-
struct the image at its input is unable to re-
construct the higher-frequency (noise) terms in
the input and therefore outputs a denoised, low-
frequency (image) reconstruction of the input.
This is caused by an intrinsic prior in convo-
lutional neural networks towards low-frequency,
“natural looking” images.

Sample results of these three operations using one of our
trained HyperINR networks are shown in Figure 10.

Figure 10. Sample results for the three image operations using the
HyperINR.

B. CIFAR-10 Results
Here, we include some early results for the training of a

HyperINR network on the CIFAR-10 dataset. As far as we

6



are aware, there is currently no paper which presents results
of training a HyperINR on the CIFAR-10 dataset.

We have seen that the majority of papers in this area of-
ten use the MNIST and CelebA datasets for experimenta-
tion since (1) the framing of the images in these datasets
are fairly consistent (in MNIST (CelebA), digits (faces) are
always centered and are roughly on the same scale) and (2)
the difference between any two images, even between im-
ages belonging to two different classes, is not significant
and can easily be compressed into a latent representation.

By the same line of reasoning, we can argue that the
CIFAR-10 dataset is a difficult benchmark for HyperINRs
as the (1) framing, (2) scale and (3) position of the objects
of interest are inconsistent between images and (4) there is
a fair amount of variance between even the images of the
same class.

Samples from a HyperINR network trained on the
CIFAR-10 dataset are shown in Figure 11. The architecture
for the HyperINR is the same as the HyperINR trained for
the MNIST dataset in the main paper, only with 3-channel
inputs and outputs for the RGB images.

Observe that while the reconstructions are not as clear
as in the case of the MNIST dataset, the general outlines
and identifiable features of the objects in each image are
largely recognizable. The blurriness is likely due to the fact
that we have chosen to use the same HyperINR architecture
for the CIFAR-10 dataset as the MNIST dataset whereas
the former is a considerably more difficult benchmark for
the previously cited reasons. As such we believe that the
network performance on the CIFAR-10 dataset can also be
improved by increasing the number of layers or the trainable
parameters of the networks in the HyperINR.

Using the latent vectors from the trained HyperINR net-
work, an MLP-classifier is able to quickly converge to ∼
70% testing accuracy on the CIFAR-10 dataset which, while
proving that our results are generalizable across datasets, is
also likely to improve upon using more trainable parameters
and a latent vector size higher than d = 256.

Figure 11. Sample results for the CIFAR-10 dataset.
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