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Abstract

Wi-Fi modeling is an essential component in ensuring
Wi-Fi stability and has thus attracted significant attention
over the years. In this work, we propose an attention-based
neural network architecture which maps Wi-Fi RSS in in-
door environments up to and including second-reflections
using point-cloud samples. We find that while our method is
capable of converging on viable approximations to the Wi-
Fi RSS signal, our limited training data prohibits us from
matching performance in unseen room structures. We con-
clude by noting two possible future directions for the related
task of recovering room structure solely by sparse RSS mea-
surements.

1. Introduction
Wi-Fi is one of the most ubiquitous phenomena of mod-

ern life. This makes it all the more surprising that it is not
subject to the same stability of performance we have come
to expect from other fundamental utilities such as electric
and water. An important precursory step to ensuring this
stability lies in accurate and accessible modeling of Wi-Fi.

Earlier approaches to Wi-Fi modeling rely on the idea of
simulation, namely ray-tracing based approaches where the
received signal strength in an environment is accurately es-
timated upon being provided the room structure [3]. While
by far the most accurate of the proposed methods, except of
course arduous manual measurement, this method fails in
accessibility as it not only expects domain-knowledge from
end-users but also requires the environment to be mapped
prior to modeling.

More accessible approaches to this problem include
propagation models where engineered approximations al-
low closed-form heuristic solutions based on a limited num-
ber of measurements [6, 2]. These solutions however appeal
to the opposite end of the spectrum and provide sub-par per-
formance in exchange for ease of use.

Recently, there have been machine learning-based ap-
proaches to Wi-Fi modeling using Convolutional Neural
Networks [4, 8]. While this approach makes progress to-

wards an accessible and accurate Wi-Fi modeling system, it
still requires a 2D model of the room.

In this work, we propose a neural network-based method
which recovers an indoor Wi-Fi RSS map up to second re-
flections using sparse point cloud data which is easily col-
lectable by smart phone cameras.

2. Related Work
Scene Representation Networks. Scene Representa-

tion Networks (SRN) [7] represent 3D scenes in terms of a
function φ which maps from three-dimensional coordinates
(x, y, z) to scene properties such as opacity or color. SRNs
implement this function in terms of a multi-layer perceptron
which results in an implicit representation of the scene in
the weights of the neural network. This formulation shows
benefits over conventional 3D representations such as point
clouds, voxels or meshes as it is continuous over R3, can be
sampled at arbitrary resolutions and take up substantially
less storage space than alternatives.

Multi-Head Attention. Vaswani et al. [10] uses a vari-
ant of Bahdanau et al.’s dot-product attention [1], called
scaled dot-product attention, formulated as

Att(Q,K, V ) = softmax(
QTK√

d
)V (1)

where the attention layer outputs a weighted combination of
the values of the input dictionary (key, value) pairs based
on the proximity of the query to the corresponding key.

In the Transformer, attention is used in both the Encoder
Block and the Decoder Block. In the former, attention is
used to obtain learned context representations from the in-
put sentence and in the latter, attention is used to select an
aggregate of the context vectors generated by the Encoder
that are relevant for the current step in the Decoder.

Vaswani et al. utilizes a further extension to the attention
mechanism called multi-head attention which trains multi-
ple attention networks on the same input such that some of
the networks learn the latent, long-range contexts and some
of them learn the immediate short-range contexts of the in-
put which are then aggregated into a final context vector by
the means of averaging or concatenation.
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Fourier Features. Due to their spectral bias towards
low-frequency content, neural networks have difficulty
learning high frequency functions [5]. Fourier features
[9] address this difficulty by incorporating synthetic high-
frequency content into the input in the form of sinusoidal
perturbations and are therefore significant auxiliary compo-
nents to SRNs.

3. Methodology
Problem Statement. Given the line-of-sight (H0), first

reflection (H1) and second reflection (H2) received signal
strength measurements at M points, we want to find a func-
tion φ that maps p = (x, y) from R2 to received signal
strengths (H0(p), H1(p), H2(p)).

Input. The network takes as input M 2D points p[M×2]
corresponding to points where the ground truth H0(p),
H1(p) andH2(p) values are known. The network also takes
as input the router positionW[1×2] and theN sampled point
cloud points PC[N×2].

Output. For each query point in p, the attention network
outputs a d-dimensional embedding which has information
regarding the relative position of pi with respect to the point
cloud samples PC. The MLP network then maps this em-
bedding vector to a single value corresponding to Hj where
j ∈ {0, 1, 2}. This is repeated for all three networks forH0,
H1 and H2.

3.1. 2D Room Camera Simulator

For synthetic data generation, we have first implemented
a 2D room camera simulator in MATLAB with the follow-
ing features:

• Wall Interpolation from 2D Room Plan Images.
The simulator has the ability to take as input a black-
on-white room structure diagram (see Figure 1) and
then use Hough transform to locate and interpolate the
line segments corresponding to the walls which allows
the user to sample point clouds and other features later
in the pipeline.

• Point Cloud Sampling on Interpolated Walls. Hav-
ing interpolated the line segments corresponding to the
wall segments in the input diagram, the simulator is
then able to sample the wall segments for point clouds
at a user-specified density.

• Router Sampling. The simulator is able to query the
user for a user-specified number of router positions.

• Depth Map Acquisition. The simulator queries the
user for multiple desired camera locations and orienta-
tions as well as custom camera intrinsics and generates
1D RGBD images from the placed cameras by means
of 2D ray casting (see Figure 1).

Figure 1. 2D Camera Simulator outputs. (top left) Input room di-
agram. (top right) Simulator output with cameras and point cloud
samples. (bottom) 1D depth maps from Cameras 1 and 2

For measuring the received signal strength based on
room and router combinations, we modify the publicly
available Indoor Radio Propagation MATLAB model1 to
output the line-of-sight (H0), first reflection (H1) and sec-
ond reflection (H2) received signal strength maps which are
then sampled at the query points output by the 2D Room
Camera Simulator from before.

3.2. Wi-Fi Attention Network

We implement an Attention-based Neural Network ar-
chitecture as seen in Figure 3. For each training instance,
each network block (note from Figure 3 that the proposed
architecture is replicated for each Hi estimate) takes as in-
put a query point p, a router positionW ,M wall point-cloud
samples PC and outputs a single received signal strength
estimate Ĥi.

The first block in each network instance implements
a multi-head attention mechanism which takes the query
point Q[1×2] concatenated with the router position W[1×2]
as the Query (Q) and the M point cloud array PC[M×2] as
the Key (K) and Value (V ). As in Vaswani et al., these in-
puts are first linearly projected onto embeddings of dimen-
sion d using learned projection matrices W{Q,K,V }[d×2]
which are used to calculate a scaled-dot product attention.
The block finally outputs a single vector VQ[1×d] for each
query point Q.

1https : / / www . mathworks . com / matlabcentral /
fileexchange/64695- 3d- ray- tracing- for- indoor-
radio-propagation
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Figure 2. Wi-Fi Simulation Results up to and including second-
reflections.

Figure 3. Wi-Fi Attention Network diagram. Note that this is repli-
cated for H0, H1 and H2.

The second block takes as input the vector VQ[1×d] (we
also experiment with concatenating the vector VQ[1×2] with
the original Query (Q) vector) and uses an 8-layer MLP
which outputs a scalar Ĥi.

We have also experimented with the following additional
features:

• Centering data at the router position: As prior
domain knowledge shows that the received signal
strength is related to the relative position of each query
point with respect to the router position, we can center
all query points p and point cloud points PC at the cor-
responding router position W . This also enables us to
remove the vestigial router position W from the input.

• Inputing the log-distance: Based on the free-space

path loss model as

FSPL(dB) = 20 log10(d) + 20 log10(f)− 147.55
(2)

we also calculate the log-distances between query
points p and the router W as dlog = log10(||p −W ||)
and append the result to the input vector as u∗ =
[p|W |dlog].

• Skip connections: In order to ensure that the MLP-
part of the architecture has access to the original p and
W values, we concatenate these values to the output of
the attention block and input the resulting vector into
the MLP.

• Fourier Features: In order to ensure that the network
is able to learn the high-frequency variations between
points in the case of walls and reflections, we imple-
ment two types of Fourier Features.

Linear Fourier Features. These work as in [9] and take
the u = [p|W ] input to the attention network and map
it to

φ(u) = [a1 cos(2πb
T
1 u), a1 sin(2πb

T
1 u),

· · · am cos(2πbTmu), am sin(2πbTmu)]
(3)

Radial Fourier Features. As prior domain knowledge
states that radio propagation is in essence a radial pro-
cedure, we can change the common linear Fourier Fea-
tures from before by mapping not the linear input vec-
tor u = [p|W ] but rather the polar coordinate represen-
tation of u as ◦u = [r, θ] = [||p−W ||, arctan py−Wy

px−Wx
]

to

φ(◦u) = [a1 cos(2πb
T
1 (◦u)), a1 sin(2πbT1 (◦u)),

· · · am cos(2πbTm(◦u)), am sin(2πbTm(◦u))]
(4)

4. Experiments & Discussion
For experimentation, we use the four room designs seen

in Figure 4. For each room, we sample 15 different router
positions W . For each router position, we sample 50 differ-
ent query points p inside and outside the room. For each
router and query point combination, we sample 96 point
cloud samples PC.

Our preliminary experimentation shows that the per-
formance is heavily affected by the presence and type of
Fourier Features used. As such we present our results on
three experiments as using (1) no Fourier Feature, (2) linear
Fourier Features and (3) radial Fourier Features.

For all experiments, we fix the embedding dimension
d = 64 and all activation functions to Rectified Linear Unit
(ReLU) and employ the log-distance and skip connection
implementations explained in the previous sections.
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Figure 4. Room structures for experimentation.

4.1. Experiment Results

We present quantitative and qualitative results in Table
4.1 and Figure 5 respectively.

LMSE No FF Lin. FF Rad. FF

10 20 64 10 20 64
Training 23.96 18.98 15.56 20.98 19.99 17.27 21.29
Validation 23.81 19.66 16.74 22.42 19.86 18.35 24.51

Table 1. Quantitative results from experiments. While nearly all
cases outperform the baseline, we see that Linear FF works better
than Radial FF.

We make the following observations regarding these re-
sults:

Line-of-sight RSS is recovered relatively quickly. Look-
ing at the first column of Figure 5, we observe that in most
cases, our network is able to recover the line-of-sight RSS
relatively easily (notice that the area near the router is nearly
identical in all cases to the ground truth). This is not sur-
prising as including the log-distance between the router and
query points in our input essentially relegates the H0 esti-
mation to a linear mapping (see Equation 2). However, we
observe that the attenuations due to the obstructions around
the corner are not well-captured by the No FF network as
this obstruction presents a high-frequency change in the
RSS. Notice that both Linear and Radial FF networks are
able to capture this variation.

Increasing the dimensionality of the Fourier Features
causes over-fitting. Looking at Table 4.1, we observe that
while increasing the dimension of the Fourier Features from
10 to 20 noticably increases performance, increasing the di-
mensionality further from 20 to 64 causes overfitting and
results in artifacts (see the last row of Figure 5).

Figure 5. Qualitative results from experiments. Numbers to the
right indicate the dimension of the Fourier Features used. No FF
is not able to reconstruct the high-frequency details and Radial FF
create artifacts.

Linear Fourier Features outperform Radial Fourier Fea-
tures. Table 5 shows that Linear FF outperforms Radial FF
in all experiment dimensions. This is likely caused by the
fact that Radial FF tries to map two different class of values
(the norm is in meters whereas the angle is in radians) in the
same way, which causes artifacts.
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5. Conclusion
Based on our experiments, we conclude that while our

network is able to recover accurate heatmaps in the case of
new router positions and point cloud samples in rooms sim-
ilar to the training data, it fails to match performance upon
changing the room structure which indicates that training
on more room samples would likely resolve this problem.
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A. Future Directions
Here we note two alternative solutions as future direc-

tions that can be pursued. The methods described momen-
tarily are tangential rather than identical to the problem de-
scribed in the main paper and aim to recover room structure
solely from sparse RSS measurements.

A.1. Iterative Refinement using Neural Rendering

The first method posed relies on the principle of neural
rendering where the room structure is implicitly captured
in the weights of an MLP which takes as input 2D points
and outputs room characteristics (signed distance, normal
vector, scattering coefficient, etc.). Using the room charac-
teristics, we then find the specular N -bounce paths where
N ∈ {1, 2} by starting with a transmission angle θ and op-
timizing for a fixed number of iterations.

The primary algorithm is given in Figure 7 which alter-
nates between updating the specular paths and updating the
room structure.

As this is an ill-posed problem, we can predict that for
this method to work we need a good initial guess for the
room structure which we can estimate from H0 using a de-
terministic method such as convex hulls.

A.2. Recursive Rendering Using Sub-routers

The second method posed relies on the idea that once we
know the incoming direction and energy at a point on the
walls, we can treat that point as a sub-router and use it to
render other sub-routers.

Then, using a recursive estimation scheme, we can start
first by estimating the incoming RSS and direction at points
on the wall based on the original (actual) router. Then,
for the next iteration, we can calculate the contribution of
each sub-router on the other sub-routers and update our sub-
router RSS by that amount which corresponds to first reflec-
tions. Doing this for N -iterations gives us a reconstruction
of the RSS up to N -bounce reflection.

The main difficulty with this approach is that the method
by itself is very similar to ray-tracing, however adding the
task of recovering the room structure to the problem makes
this somewhat intractable as now, the sub-router positions
change between iterations and must be somehow interpo-
lated from previous iterations. This could likely be ap-
proached by an update mechanism which ensures that the
room structure is updated in a way that does not drastically
alter the specular path (a wall segment moving orthogonally
to its normal should affect the specular reflection path less
than say it moving parallel to the normal).
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Figure 6. Iterative Refinement using Neural Rendering. In each iteration, we alternate between optimizing room structure and finding
specular paths.

Figure 7. Recursive Rendering Using Sub-routers. In each iteration, we update the incoming energy at each sub-router based on the
sub-routers in the previous iteration.
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